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STABILITY OF STEADY ROTATIONS OF A HEAVY GYROSTAT ABOUT ITS PRINCIPAL AXIS* 

A. M. KOVALHV 

Stability of steady rotations of a gyrostat about its principal axis is investigated 
with the use of the Arnol'd-Moser theorem /1,2/ extended to Stationary motions /3, 

4/. It is shown that steady rotations are stable for all parameter values that be- 
long to the region where the necessary stability conditions are satisfied, except 
for some manifold of lesser dimension. 

Sufficient conditions of stability of steady rotations of a gyrostat about its principal 
axis at an arbitrary angular velocity were obtained by Rumiantsev /5/. The case when the 
gyrostat can rotate about its principal axis only at some fixed velocity was analyzed in /6/. 
Sufficient conditions of stability of steady rotations of a gyrostat about any axis of the 
cone of steady rotation axes were obtained in /7,8/. The necessary conditions of stability 
were also indicated in /8/. 

1. Steady rotations of the gyrostat about its principal axis. The axesabout 
which a gyrostat can rotate at constant velocity form in the space rigidly attached to it a 
cone mentioned by Kharlamov /9/. Analysis of that cone-locus of ends of angular velocity 
vectors of steady rotation-shows that the steady rotation of the gyrostat about its principal 
axis atarbitraryangularvelocity a is onlypossibleunderconditionthatthataxis carries thecen- 
terofmass andthe gyrostaticmomentvector 5is directed along it. Let us investigate the 
stability of such motions relative to angular velocity projections o,, tip, oQ ma of the vec- 
tor of the vertical vl.vl, va on the moving axes. 

We define the gyrostat motion by Hamilton equations. On the assumption that the gyro- 
stat center of mass lies on the first principal axis aa that the gyrostic moment vector is 
directed along that same axis, the Hamiltonian for the gyrostat is of the form /lo/ 

H=.~(a~[(~~-~~C03e)Lin~+P~eos~sin6-_h'sinB]'+ (1.1) 

CLI [(pip - pcF c0s0) cosq--pesin cp sin 8]*+ + + Te sin m sin 0 

where a,. a,, a, are components of the gyration tensor, r is the product of the gyrostatweight 
and the distance of the center of mass to the fixed point, i' aa e are projections on the 
first axis the gyrostatic moment vector and of the unit vector directed from the fixed point 
to the gyrostat center of mass, respectively. 

To avoid the appearance of singularities in the equaticns of perturbed motions we deter- 
mine in conformity with /3/ the investigated steady rotation of the gyrostat at angular veloc- 
ity o' by the following variables: 

(1.2) 

The steady rotation defined by equality (1.2) is the steady motion of a mechanicalsystem 
with the Hamiltonian (1.1) and, since the presented system is in this case two-dimensional, 
we use for analyzing its stability the Arnol'd-Moser theorem extended to steady motions /3/. 
Note that an investigation of steady rotation stability with respect to 01. 02. 02, v~,'vvz~ va is 
equivalent tc the investigation of stability of respective stationary motions with respect to 
PS. Pe. Pu. 63 q. 

2. Expansion Of the Hamiltopian in the neighborhood Of steady rotation. 
We pass to dimensionless variables zl.+ y,. yz aa dimensionless .time T setting 

@eP Pu) = m @I. Q), (e-+4--_)=(Y*4,), r=t)/iiyr 

The equations of perturbed motion of the reduced system in the dimensionless form are of 
the form 

-- 
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where the clot &notes dtffrxentiation with respect to 7. Parametsrs w and h can assume any 
arbitrary values, while piwameters a and B must sat$.rofy the+ conditd.mae that follow from the 
inequality of the trian$Lc for mommts 0P inertia.Tbedomin C of variation of pammcters a 
and ft is thrnr of positive a and b bounded by ~72~~99 a = bfa A- a), b = a(& +- I), a I: 6(a--), 

3. The netesaary condicims af stability. To obtain the necessary con&tions 5E 

stability we write the &aracteri.stic. wuation of the linearized system with fmctton Hz 

pJ 4" t+' i f&s = 0 (3.1) 

Ft = ab (o + Qr - (a i- bf (0 t I”) w + 20’ - e {a + b) 

Ir = d (a - 1) + cmc& - ae. & = d (b - Z) + bwh - he 

ConsaquentLy the mmsss%ry conditions aE st&ility are of the form 

fl > 0, &ES > 0 
13.2f 

&' - 4& = aW(6, + ;i)j - ?nb [a C 6) fw A- hFti-L 
(a i- fi)Z f& A- h)%$ - ?a& (a 7 6) (a ,“i_ x)2 2’ 2e (n -i_ fi)r x 
(W+h)w+sabe(w” h) m - 8e (a -t- h) w* -L (a - h)* > 0 

In the qqce 0 &&& region G, whehere the necessary stability conditions 13.21 are 
satisfied, consists of Wo subregions: GI and G" iPig.l). The analysis of region r+ in the 
space of dWensionless pammeters a,b, U. A is fairly complicated. It: is, however, possible 

to state that, unlike in the case of tt.hha solid body /3J, condi- 

t 
% 

tions (3,21 are satisfiad at all points of region C 8 although 
only for an appropriate SetLection of h. 

4. The suffitienr conditions af stability.rtl region 
ce the quadratic fona W, in expansion 12.11 is of fixed gig% 

This enablas us to apply the Routh thW3DBli with Liagundv"s sup- 
plement and to state that the steady ratations that correspond 
to region 6% are stabl*. In this reqlon the suffic&snt condi- 
tions Of st&ility &>O, ?A>0 are tkrt sanze as obtained in /Si. 

In rlvg~on 4 the quadratic form g, altematecp. We denote 
the roots of the chalracWxisti.c equation (3.1) by z!zi&, irria,ia, > 
aI >@) and write the ca.nonicaL transfomation which seduces 
tramiltonian (2.1) to t&e form 
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Formulas for ClrCI,Cg,C( are obtained fran eXpreSSionS for 81, Szr % S, by the substitution 

of a0 for a1 and a, for at.. 
For resolving the question of stability of investigated motions it is necessary to calcul- 

ate the determinant 

D - -(B11c,2 + 2B,,c1c, + Blpa12) (4.2) 

Coefficients fill, fiel, PI2 are equal to the coefficients at P12Q12t Pow~ 2P,Pl?W, in the 

form 2iH’, where the Hamiltonian H' is determined by formula (4.1). We have 

2a1az(a12 - a,2)&,=*'.',[3A? + IlAo i 80: + el.Q i_ 2(50 i_ 
3X) sp.sQa + 1:2 I(0 -+ 1.) (40 + 31. - 4a (6.1 + k)) + e]sf -i- 
2 (40 +- 3i, - 4n (0 + A)) s,s,3 + I(w + 1.) (-20 - h + 
2a (0 -+ A)) - el sS2sd9 i 6 (1 - a) sl”s,” + 6s,%,? + 
2 (0 f h) (a - 1) s,s~s~:! i 2 (-20 - h T 2a (0 + 

h)) s&%z + 4 (a - 1) SIS$s$( 

2a,az (aI? - a2?) PI? = 1 2 [3k? + 11 h $ 8 o? + elss’c,: i- 

(sgc* + c8sJ2 + I;? [(o + A) (-261 - A - 2a (0 + A)) + 
el (sa2cIz + c3?sd2) 4 2+.sSc,c, I 1S’2 I(w + 1.) (40 $ 3A- 
4a (0 f A)) -I. el s,2c42 + (1 - a) ((s4c1 i s1cJ2 + 
28,s,c,c,) -+ (40 -+ 3h - 4a (w + A)) (SIC4 i S‘C1) s,c, + 
(50 + 3X) (s2c3 + sgc2) sgcB + (a - 1) (0 i A) (s,s,c3' + 
c,cpsg*) + (-20 - A -I- 2a (0 + A)) (+ss,c,? -I- c+~~‘) + 
2 (a - 1) (sz%c,c, i- s,s,c,cs) 

The expression for ptl is obtained from the formula for & by interchanging the positions 
Of Sk and ck. 

The determinant (4.2) was calculated in /3/ for h = 0, a = 1 and shows that D (a, b, A, o)z$ 
0, hence the equality D (a, b, h,o)= 0 isolates in the space O&ho some manifold. The reson- 
ance relations a1 = 0, a? = 0, a, = a,, a, = 3a, also separate scnae manifolds in the space 

OabAo. The steady rotations that correspond to the separated manifolds are not considered 
here. As regards the remaining steady solutions that belong to region G,, we conclude on the 
basis of the Arnol'd-Moser theorem extended to stationary motions /3/ that such motions are 
Liapunov stable. 

Hence the following theorem has been proved. 

Theorem. Let a gyrostat steadily rotate about its principal axis which passes through 
the center of mass and along which is directed the gyrostatic moment vector. Then in the ex- 
tended parametric space Oabho the stability region is region G where the necessary conditions 
of stability are satisfied and from which are excluded the manifolds that correspond to reson- 
ance relations and to the condition for determinant to be zero. 

The comparison of the obtained here results with those of investigation of solid body 
steady rotations /3/ makes it possible to assert that the presence in a body of a rotor rotat- 
ing at suitable velocity has a stabilizing effect on the motions of the body. The unsteady 
rotation of a body about its middle principal axis CM be stabilized by an appropriate selec- 
tion of the gyrostatic moment. Moreover, any unsteady rotation of a soid body can be made 
steady by a suitable selection of the gyrostatic moment. This follows from that at fairly 
large absolute values of the kinetic moment vector the sufficient stability conditions are 
satisfied for any fixed vector of angular velocity and any moment of inertia. 
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