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STABILITY OF STEADY ROTATIONS OF A HEAVY GYROSTAT ABOUT ITS PRINCIPAL AXIS

A. M. KOVALEV

Stability of steady rotations of a gyrostat about its principal axis is investigated
with the use of the Arnol'd—Moser theorem /1,2/ extended to stationary motions /3,
4/. 1t is shown that steady rotations are stable for all parameter values that be~
long to the region where the necessary stability conditions are satisfied, except
for some manifold of lesser dimension.

sufficient conditions of stability of steady rotations of a gyrostat about its principal
axis at an arbitrary angular velocity were obtained by Rumiantsev /5/. The case when the
gyrostat can rotate about its principal axis only at some fixed velocity was analyzed in /6/.
Sufficient conditions of stability of steady rotations of a gyrostat about any axis of the
cone of steady rotation axes were obtained in /7,8/. The necessary conditions of stability
were also indicated in /8/.

1. Steady rotations of the gyrostat about its principal axis. The axes about
which a gyrostat can rotate at constant velocity form in the space rigidly attached to it a
cone mentioned by Kharlamov /9/. Analysis of that cone—locus of ends of angular velocity
vectors of steady rotation-shows that the steady rotation of the gyrostat about its principal
axis at arbitrary angular velocity ® is only possible under condition that that axis carries the cen-
ter of mass and the gyrostatic moment vector A is directed along it. Let us investigate the
stability of such motions relative to angular velocity projections a,, @y, wg and of the vec~
tor of the vertical wv;.v,, v; on the moving axes.

We define the gyrostat motion by Hamilton egquations. On the assumption that the gyro-
stat center of mass lies on the first principal axis and that the gyrostic moment vector is
directed along that same axis, the Hamiltonian for the gyrostat is of the form /10/

1 . < 2
H"—"m'e—{“l[(l’w—!’c cos0)sing + pecoscpsme—)»’sine] + (1.1)
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where 4a;, a,, a; are components of the gyration tensor, I is the product of the gyrostat weight
and the distance of the center of mass to the fixed point, i’ and e are projections on the
first axis the gyrostatic moment vector and of the unit vector directed from the fixed point
to the gyrostat center of mass, respectively.

To avoid the appearance of singularities in the eqguaticns of perturbed motions we deter-
mine in conformity with /3/ the investigated steady rotation of the gyrostat at angular veloc-
ity @’ by the following variables:

Pezov Pw=0: Pw=%+l’. e-———-g—, (p=—;—, \p-——_(ﬂ’t_-l—'\bo (1.2)

The steady rotation defined by equality (1.2) is the steady motion of a mechanical system
with the Hamiltonian (1.1) and, since the presented system is in this case two-dimensional,
we use for analyzing its stability the Arnol'd—Mozer theorem extended to steady motions /3/.
Note that an investigation of steady rotation stability with respect to i, ©; O3 vy, Vg, vy is
zquiva}]eng tc the investigation of stability of respective stationary motions with respect to

8- Po- Py, Oy (.

2. Expansion of the Hamiltonian in the neighborhood of steady rotation.

We pass to dimensionless variables ). %, §;. ¥, and dimensionless time T setting

(Po.P)=VTar(z,22), (6—F,¢—F)= (1,5, t=tyaTl

The equations of perturbed motion of the reduced system in the dimensionless form are of
the form
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aa ; @’ e
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3 4y

where the dot denotes differentiation with respect to 1. Parameters w and A can assume any
arbitrary values, while parameters 4 and » must satisfy the conditlons that follow from the
ineguality of the triangle for moments of inertia.The domain ¢ of variation of parameters 4

and b is that of positive ¢ and & bounded by curves e =4{g - 1), b =a (b + 0. oa=bla—

3. The necessary conditions of stability. 7o obtain the necessary conditions of
stability we write the characteristic equation of the linearized system with funchtion H,
phot Bt B =0 (3.1}
Eieablo + AP —(a+ 0 (o+ A a-+2a—ela+ b
Ey = @’ {a — 1) 4 awh — ae, £y = @’ (b — 1) + bod ~ be
Congeguently the necesssary conditions of stability are of the form
B0, &E>0
g o AL,E, = a®H e + AY — 2B (a 4 B} (o - AP >
(@ -+ B)® (0 + MYa® ~ 2abe (@ — B) (& + B)* = Ze (a+ B x
{0 - X)) o+ Sabe{o+ N o —8efa -+ M a(g—H>0

(3.2}

In the space 0} LE, vregion &, where the necessary stability conditions (3,2} are
satisfied, consists of two subregions: &, and & (Fig.l). The analysis of region & in the
space of dimensionless parameters g, 4, @. s is fairly complicated. It is, however, possible
to state that, unlike in the case of the solid body /37, condi-
tions (3.2) are satisfied at all points of region ( , although
only for an appropriate selection of A.

4. The sufficient conditions of stability.In region
G: the gquadratic foxm #H, in expansion {2.1) is of fixed sign.
This enables us to apply the Routh theorem with Liapunov's sup~
plement and to state that the steady rotations that. correspond
to region &, are stable. In this region the sufficient condi~
tions of stability & > 0. §5: >0 are the same as obtained in /54

In region G, the guadratic form H, alternates. We denote
the roots of the characteristic equation (3.1) by iv, iz, {z, >
@; >0} and write the canonical transformation which reduces
Hamiltonian (2.1) to the form

Fig.1 Ve Ve
H' = —ioaputy + i0aPage + zwm‘w.prq:-pzq: T 4.1)
Ve ., 0

and cbtain
Ty == sy {py — o) & oy {ge — Py ¥ = S (0 + 9t o (g + 2
2y =8y {py + @) F 0 (g F )t = is (o — ) T {gy 12}
5= oy {ay? — e {o + A) — ol B (e +3) — ol - be}w
5 = {(0° — ) la (W + &) — o] — awe} w
sy = {aa,® — bo la (@ —~ by — @] + abe} w
g = q, lable = A) — o @+ Mw

4

J



Stability of steady rotations of a heavy gyrostat 711

Formulas for ¢1: 0y C3, € are obtained from expressions for $» S S & by the substitution
of @, for @, and q; for a,.

For resolving the question of stability of investigated motions it is necegsary to calcul-
ate the determinant

D = — (B + 2Byp042; + Bagtin®) (4.2)

Coefficients PBu. Psa. P1: are equal to the coefficients at P10 pilgs?, 2p101P+9> in the
form 2iH’, where the Hamiltonian H’ is determined by formula (4.1). We have

2a5a, (@2 — 0By =1,[30% + 11he + 8w® + elss* + 2 (5a +
31) sp84° + 1, o + 1) (4o + 3h — 4da (@ <+ 1)) + e]ls +
2 (4o + 3% — 4a (w + A)) §5° + {(@ + 2) (=20 — A +
2a (@ + 1)) ~ el s3%,° + 6 (1 — a) §,°s,° + Os,%s5* +
2(m =+ A) (@ — 1) 588, +2(—20 — A + 2a (0 +
M) 828388° + 4 {a — 1) ;5088

20,0, (@, — @) By = 1, [382 4+ 11 ho + 8 w® - elsy’¢;® +-
(555 + €882)° + Yo l(w@ + 2) (=20 — & + 2a {0 + A)) +
el (s5%,2 + ¢3%8,2) + 28,8565c5 1y @ + 4) (4o + 32—
da (@ + 1) < el sde® + (1 ~ a) ((sier + s100)° +
2818,01¢,) + (dw + 3% — 4a (@ + R) (8,6, -7 8461) $464 +
(50 =+ 3N (sy0 + 53¢2) 8563 -+ (@ — 1) (0 + A) (s18405° +
0164558) + (—20 — A + 2a (@ 4 A)) (s,55¢4° + Co€487) +
2 (@ — 1) (52590164 + $1546o03)

The expression for f,, is obtained from the formula for §,, Dby interchanging the positions
of s and .

The determinant (4.2) was calculated in /3/ for * =0,a =1 and shows that D (a, b, }, 0) =
0, hence the equality D (a.b, A, )= (0 isolates in the space (abja Some manifold. The reson-
ance relations ; =0, a;, =0, a; = a,, a, = 3z, also separate same manifolds in the space

Oabriew. The steady rotations that correspond to the separated manifolds are not considered

here. As regards the remaining steady solutions that belong to region G,, we conclude on the
basis of the Arnol'd~Mozer theorem extended to stationary motions /3/ that such motions are
Liapunov stable.

Hence the following theorem has been proved.

Theorem. Let a gyrostat steadily rotate about its principal axis which passes through
the center of mass and along which is directed the gyrostatic moment vector. Then in the ex-~
tended parametric space Oablo the stability region is region G where the necessary conditions
of stability are satisfied and from which are excluded the manifolds that correspond to reson-
ance relations and to the condition for determinant to be zero.

The comparison of the obtained here results with those of investigation of solid body
steady rotations /3/ makes it possible to assert that the presence in a body of a rotor rotat-
ing at suitable velocity has a stabilizing effect on the motions of the body. The unsteady
rotation of a body about its middle principal axis can be stabilized by an appropriate selec-
tion of the gyrostatic moment. Moreover, any unsteady rotation of a soid body can be made
steady by a suitable selection of the gyrostatic moment. This follows from that at fairly
large absolute values of the kinetic moment vector the sufficient stability conditions are
satisfied for any fixed vector of angular velocity and any moment of inertia.
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